On Molecular Descriptors of Carbon Nanocones
نویسندگان
چکیده
منابع مشابه
Metallopyrrole-capped carbon nanocones.
We design nickel-doped and nitrogen-doped carbon nanocones with various amounts of buckling that feature square-planar, (approximate) tetrahedral, and octahedral coordination. The optimized geometries and electronic structures of these novel metallocarbon complexes are calculated by using the B3LYP (Gaussian03) and GGA-BLYP (ADF) exchange-correlation functionals. We analyze buckling and stabili...
متن کاملGraphene structure in carbon nanocones and nanodiscs.
Carbon nanoparticles, like nanocones and nanodiscs, can be obtained by mechanical treatment of carbon nanofilaments. Microstructural studies suggest that in nanocones the conical graphene stacking with progressively increasing apex (cone) angles does not fully agree with current theoretical geometry models, such as a closed cones model and a cone-helix model. The unusual stacking form of nanoco...
متن کاملCarbon nanocones: wall structure and morphology.
Large-scale production of conical carbon nanostructures is possible through pyrolysis of hydrocarbons in a plasma torch process. The resulting carbon cones occur in five distinctly different forms, and disc-shaped particles are produced as well. The structure and properties of these carbon cones and discs have been relatively little explored until now. Here we characterize the structure of thes...
متن کاملComputational studies of carbon decorated boron nitride nanocones
Density functional theory ,(DFT) calculations have been performed to investigate the properties ofcarbon decorated (C-decorated) models of boron nitride (BN) nanocones. To this aim, the apex andtip of nanocone have been substituted by the carbon atoms to represent the C-decorated models. Theresults indicated that dipole moments and energy gaps could reveal the effects of C-decorations onthe pro...
متن کاملThe Edge Szeged Index of One–Pentagonal Carbon Nanocones
The edge Szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph G, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. In this paper, the edge Szeged index of one-pentagonal carbon nanocone CNC5[n] is computed for the first ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomolecules
سال: 2018
ISSN: 2218-273X
DOI: 10.3390/biom8030092